If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23t-4.9t^2=0
a = -4.9; b = 23; c = 0;
Δ = b2-4ac
Δ = 232-4·(-4.9)·0
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-23}{2*-4.9}=\frac{-46}{-9.8} =4+1.7894736842105/2.5789473684211 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+23}{2*-4.9}=\frac{0}{-9.8} =0 $
| 1/2(x+6)-(2x)=2x | | 49x+89=10000 | | 9(2x-8)-4(x-3)=0 | | 11x-5=5x-7 | | n+3/5=20 | | -9=-18-n | | x+5=-3x+53 | | -2(r-5)=-5r+34 | | 4.24+12.4h=11.6h | | -3-2x=5x+18 | | 2(3x-7)+4(3x+2=6(5x+9+3 | | 3(w-9)^2+2=50 | | (-5)-s=6 | | 6x-6+3x=30 | | 170+3y+10=360 | | -3(1+5r)+7r=9-5r | | 76-4x=60 | | 3x+9+2x=14 | | -1z=15 | | -8(4x+2)-7=-3x+6 | | 1.3x+4.4=0.9x-0.8 | | 12.2+14.8b=-11.07+13.5b | | 8+8(1-7x)=-320 | | -15q=-11-14q | | x+3+6x=-60 | | −2x−5=3 | | -2c+10+19c=14c+1 | | (1.03)^x=2 | | −2x−9=−3 | | 2+6x+5x=24 | | 7.3n+15.82=-11.7n-16.41-13.37 | | 24^2+45^2=c^2 |